<< /S /GoTo /D (subsection.5.5.0) >> (4.11. endobj (Shannon Coding Theorem for the BSC – 1948.) 28 0 obj Summary) 0000059827 00000 n
 MDS Conjecture Plot) << /S /GoTo /D (subsection.2.7.0) >> Summary) Construct codes that can correct a maximal number of errors while using a minimal amount of redun-dancy 2. 237 0 obj 392 0 obj The Number of Irreducible Polynomials) endobj Decoding the Hamming Code) Entropies De ned, and Why they are Measures of Information 3. 349 0 obj endobj (6.1. << /S /GoTo /D (subsection.4.5.0) >> (4.13. << /S /GoTo /D (subsection.4.16.0) >> (2.13. Concatenated Codes) 69 0 obj (1.5. 405 0 obj Polynomials) 120 0 obj 337 0 obj 300 0 obj 344 0 obj Generator Matrix) (4.7. endobj 145 0 obj << /S /GoTo /D (subsection.1.13.0) >> endobj (1. >> Summary of GRS Decoding) GRS Encoding as Polynomial Evaluation) Properties of the Euclidean Algorithm Sequences) endobj << /S /GoTo /D (subsection.2.5.0) >> endobj (6.7. Deriving Codes from Other Codes) 133 0 obj 93 0 obj 0000007622 00000 n
 endobj Extension Fields) Characterization of Finite Fields) 101 0 obj x�̗]pU����c��&��J'&�~HcK�`�Q��J[ZmM*`K�6X@$�����Vm������3�3t���Qu:�:��	�#� �t�3��}������ypgҽ���9���=�� � �0 0Q`��:`w_�i�ၜ0-���+�B��(a`�Α��0Se���s�a��cg�-柭u6/[O�S�Q�T���]����9�y���t����nj4���ݖc&����b^n��f��;�;>tY�%��j������>�W�p�Ms���r~��j[j�`��4��7����}����������t��/�G����Ȭ+k�������No+�}}*2)�\獮�����zQ��ԁ�[V��;��U���������K�{�ڲ�= Application: Double-Error Correcting Codes \(III\)) endobj endobj >> endobj << /S /GoTo /D (subsection.6.1.0) >> endobj endobj << /S /GoTo /D (subsection.2.9.0) >> endobj 345 0 obj endobj %PDF-1.4 << /S /GoTo /D (subsection.5.7.0) >> RS Codes as Cyclic codes \(another polynomial characterization\)) 272 0 obj endobj }��/C}�~�0�,�c��ю�H����l*%� Linear Codes) endobj << /S /GoTo /D (subsection.6.14.0) >> endobj 224 0 obj endstream 0000024735 00000 n
 endobj endobj (2.1. 41 0 obj (2.5. This book is based on lecture notes from coding theory courses taught by Venkatesan Gu-ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY andby … 57 0 obj Solving the Key Equation) Examples) F-����w�2�fᠼ��J�-����V�c�ݏ3��{@eJT 45 0 obj The Binary Hamming Code) Coding theory then attempts to realize the promise of these bounds by models which are con-structed through mainly algebraic means. endobj (1.7. << /S /GoTo /D (subsection.4.11.0) >> endobj endobj endobj 149 0 obj Combined correction/erasure/detection) << /S /GoTo /D (subsection.4.9.0) >> 116 0 obj 252 0 obj 148 0 obj (6.8. Encoding RS codes) (2.6. 188 0 obj endobj 418 0 obj << (7.6. << /S /GoTo /D (subsection.4.17.0) >> Communication System) 205 0 obj (6.12. Shannon Coding Theorems for the BSC) (2.10. >> endobj 388 0 obj 341 0 obj 196 0 obj 92 0 obj << /S /GoTo /D (subsection.5.9.0) >> endobj 240 0 obj 100 0 obj 0000042007 00000 n
 0000060902 00000 n
 endobj Binary Narrow-Sense Alternant Codes) (7.1. (6. 168 0 obj 104 0 obj (4.16. 137 0 obj endobj endobj endobj (2.7. 419 0 obj << (1.21. 17 0 obj 0000002419 00000 n
 endobj endobj Syndrome Decoding of Linear Codes) 1731 0 obj <>
endobj
         
 << /S /GoTo /D (subsection.2.11.0) >> 128 0 obj 0000023634 00000 n
 (1.17. For scribes, here is a … (3.5. endobj Plot of Asymptotic Bounds) Foundations: Probability, Uncertainty, and Information 2. << /S /GoTo /D (subsection.2.1.0) >> endobj The repetition code demonstrates that the coding problem can be solved in principal. Reed-Solomon Codes) 0000000016 00000 n
 endobj Minimum Distance and EqColorHTextcolor) << /S /GoTo /D (subsection.7.5.0) >> endobj << /S /GoTo /D (subsection.4.18.0) >> Information theory is the study of achievable bounds for com-munication and is largely probabilistic and analytic in nature. 89 0 obj 61 0 obj 225 0 obj /D [414 0 R /XYZ 39.602 575.281 null] 233 0 obj The Hamming Metric) endobj 9 0 obj endobj 76 0 obj endobj (3.8. (2.9. << /S /GoTo /D (subsection.2.12.0) >> << /S /GoTo /D (subsection.2.8.0) >> (3.7. 157 0 obj << /S /GoTo /D (section.5.0) >> The Gilbert-Varshamov bound) endobj 0000061934 00000 n
 endobj endobj << /S /GoTo /D (subsection.2.6.0) >> endobj 228 0 obj Finite Field Basics) (4.4. (5.8. (2.11. 353 0 obj << /S /GoTo /D (subsection.2.14.0) >> 368 0 obj << /S /GoTo /D (subsection.6.4.0) >> endobj endobj 0000021219 00000 n
 endobj MDS Code Examples) This course is adapted to your level as well as all Python pdf courses to … 313 0 obj endobj 200 0 obj endobj 281 0 obj /Length 253        65 0 obj (5.6. endobj (2. Stay up to date with latest software releases, news, . << /S /GoTo /D (subsection.1.9.0) >> (1.14. (1.16. endobj << /S /GoTo /D (subsection.3.2.0) >> endobj endobj Parity Check Matrix) endobj 197 0 obj 389 0 obj << /S /GoTo /D (subsection.6.12.0) >> It provides a means to transmit information across time and space over noisy and unreliable communication channels. << /S /GoTo /D (subsection.6.13.0) >> Field Characteristic) Coding Theory Lecture Notes Nathan Kaplan and members of the tutorial September 7, 2011 These are the notes for the 2011 Summer Tutorial on Coding Theory. 320 0 obj 0000012326 00000 n
 << /S /GoTo /D (subsection.7.2.0) >> 80 0 obj 273 0 obj 124 0 obj endobj BCH Code Example \(continued\)) << /S /GoTo /D (subsection.2.2.0) >> endobj endobj Minimum Weight) (3.6. Primitive Elements) endobj endobj (1.4. 48 0 obj (1.22. 325 0 obj endobj xref
 Information theory is the study of achievable bounds for com-munication and is largely probabilistic and analytic in nature. 181 0 obj endobj endobj endobj endobj trailer
 endobj Take advantage of this course called Python and Coding Theory to improve your Programming skills and better understand Python..