10 0 obj << /Font 17 0 R Theorem 1.2 – Main facts about open sets 1 If X is a metric space, then both ∅and X are open in X. /ProcSet[/PDF/Text/ImageC] /Name/F2 �4�l:5v!i�UM5v( �h:�6����R,.�i�e��A�����������G�������Y��eV��E�B#�w[L�[�I�. First, we prove 1. /BaseFont/KQIRGL+CMSS10 /FontDescriptor 24 0 R /LastChar 196 x�S0�30PHW S� Hence, only a review has been made of metric spaces. ��� T /BaseFont/IPVJTN+CharterBT-Roman endobj 0 0 0 0 0 0 0 500 170 278 338 331 745 556 852 704 201 417 417 500 833 278 319 278 << At the same time the top-ics on topological spaces are taken up as long as they are necessary for the discussions on set-valued maps. BASIC PROPERTIES OF METRIC SPACES 67 4.1 Definitions and Examples 67 4.2 Open Sets 71 4.3 Convergence; Closed Sets 75 4.4 Continuity 80 . /F1 9 0 R /Length 371 /Encoding 10 0 R /Subtype/Type1 space will be a set Xwith some additional structure. Trent University Library Donation. 556 403 1000 500 500 500 1225 556 245 993 0 0 0 0 0 0 403 403 590 500 1000 500 822 0 0 0 0 0 0 541.7 833.3 777.8 611.1 666.7 708.3 722.2 777.8 722.2 777.8 0 0 722.2 0000007831 00000 n endobj Books to Borrow. endobj You don’t have << If (X;d) is a complete separable metric space, then every nite Borel measure on Xis tight. 624.5 574.7 272.9 470.2 272.9 470.2 261.2 261.2 450.9 483.9 417.9 483.9 417.9 287.3 Proof: Exercise. /Type/Font 500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 319.4 777.8 472.2 472.2 666.7 0000000918 00000 n Remark on writing proofs. Some Interesting Subsets of the Plane; Continuity. A��l��� ���9c�Ɏa�3a��’��2[r�5瑭�V,DDHZ�,�K����rn-��qx�8��}�AxS���"���;� ��"�)%XS��Mb*j5A�Ǝ� �N�����?a�}p��/�?�;�N�����ᶶ�o�m�v㸾��Q�^�����Y���K���ڮ�)���Y��kz��EQ-l�E�D��"#���F�HG�Hթ!�+d@�B����;8=Of�AL�83q@r�'��ԉˬ�5�Iǔ;�9!�إ��a� �������{�0L`�'G`��LL!X&q�0�LA�aBzxL!k�!i�&�!s�-;�4,&�P�"v�c�"���t��C :�\4-0���a�Ѣ�oE� �E���Ƌ�[[��ѱƲ>k���H;��!Ǵ���m�qE���.�OiI^� �z]��#�OI�+"CI�zA�\6K>�wd�O��9���æ� ~��I�H�$�ON�%��U6��~��m:O��0��6J�Ф���T�0V�n�wQ��k�-!��$Ф���m:�N�i. 586 586 421 481 421 1000 500 201 507 539 446 565 491 321 523 564 280 266 517 282 19 0 obj x�c```c``z���� �� �� 6P���H��20H�ҁ�Hj����A�O`h����(,ˢƢ¢̢Ţ�� ��� endstream endobj 35 0 obj 76 endobj 23 0 obj << /Type /Page /Parent 22 0 R /MediaBox [ 0 0 387 623 ] /Resources 24 0 R /Contents 26 0 R >> endobj 24 0 obj << /ProcSet [ /PDF /Text /ImageB ] /Font << /F4 29 0 R /F0 30 0 R /F1 31 0 R /F6 32 0 R /F2 33 0 R >> /XObject << /im1 28 0 R >> >> endobj 25 0 obj 522 endobj 26 0 obj << /Length 25 0 R /Filter /FlateDecode >> stream theory of metric spaces lecture notes and exercises 238.9 794.4 516.7 500 516.7 516.7 341.7 383.3 361.1 516.7 461.1 683.3 461.1 461.1 777.8 500 861.1 972.2 777.8 238.9 500] x����n�0Ɵ����L�\��2m�5jRe�N�%"�aj�FP��=��3� Q�N��,:��w>���2i8�#$�¿1·��SrQ�^��3%��4k�8%��� s�S�f���Ӳ�8��&*D��/G�3) � 280 528 568 539 539 539 539 539 833 539 569 569 569 569 495 551 495] 843 568 539 551 531 382 400 334 569 494 771 503 495 468 486 500 486 833 0 0 0 201 650.6 508.8 819.8 663.1 692.8 599.6 692.8 606.4 522.4 640.6 643.8 624.5 885.7 624.5 Theorem 2.6. The definition of an open set is satisfied by every point in the empty set simply because there is no point in the empty set. 161/exclamdown/cent/sterling/currency/yen/brokenbar/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine/guillemotright/onequarter/onehalf/threequarters/questiondown/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis/yacute/thorn/ydieresis] << 694 694 694 586 558 609 507 507 507 507 507 507 725 446 491 491 491 491 280 280 280 �?V�zV�i]��*k���i��Dw�YvV�H�CP�ap��zi�Ka~��z����T�I>��'t���_��I�%������oO����i��_O���A��wkC�þ�V��i{i����������~�>�)�����$;�/���?a+K��M���V�ջ����U��]�mz���5M�h-n��w�7�v�߲`��o&�����qkǸoa���Wm}=ϧ������߷��u�~E;CI��7_����w����׻}��]j���O��n߶����[}4�P�v*v��0��4� 299.8 731.4 444.1 444.1 626.9 624.5 625.7 600.8 678 561 534.9 626.9 663.1 258.8 442.9 693 576 537 694 738 324 444 611 520 866 713 731 558 731 646 556 597 694 618 928 600 0000001035 00000 n 17 0 obj 147/quotedblleft/quotedblright/bullet/endash/emdash/tilde/trademark/scaron/guilsinglright/oe/Delta/lozenge/Ydieresis 128/Euro/integral/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl/circumflex/perthousand/Scaron/guilsinglleft/OE/Omega/radical/approxequal SET THEORY AND METRIC SPACES . /Widths[299.8 470.2 783.7 470.2 783.7 712.1 261.2 365.7 365.7 470.2 731.4 261.2 313.5 A�m->+N�����������iXa.��JתmLW�HAն����k��[��i�&�C[UM{MS CUTL&5�aC-E; ��!3!����b#A�k�%�/�aPD��0�(�+T´�0�#������������p�}��/ZZ��������������������������������������������������������p�۱������������������������������������������������������������������堥G�(�dK�6-DuS�%A��e()�q�#z�0�t ���9�@�Q��#PC�;V2�1 ����p@�x4 �4�g 4C/�"�`�� �a4��[�>�p��L:֝��;h �� ����&$K��eX0����N!����B d4��$E>��A�A�@�dC�I4ȇ��Ma��I0�A�� ��v�ݥzkvݧzi^���'ۤ�������{����V�=�}�W����������{�������K��WI����������n���*�C3���������RR�lt����匿z�_���W���z��E�����=R�/��~4��?����׾� {�7�����#8.Ã#����� �������[�zK��?oZJ�[�0� ���7��=� �����-�xo���S��|�U��܋=�]�nE�᷿�����t�]m�n��ڧ�������ް����&O�z����ԧˠ�KC�o#�W�� w~��ݦ�J�N�n�ۿwJ�M���U��a ���1 4�%wI��nøMnp�P@� !PiD1��@f��`D0�0�1d1�0҄!Pc0@˃H+��a� � �4݈-�J�.�U���S����i�4 iff ( is a limit point of ). endobj �4��������c֋%���3O,�Z�ͩ���7���Y�YƢ}�:/����t�o���.��j�����+���Jp�B� ��áz)�c�{uax�;��#�P��3z�����>���9Ú��A8��A�����H�t�Yة;�A��n�t��1�7V�BL��zƘ�E0�Ę0s�'�C��ƫ5?�= ������]���i�3�(mpD�?��.��=����\t�3�gH��= ޷MS�T��0�t��(J�D��]���Kl�� ��<>�({;����L@ endstream endobj 27 0 obj 4612 endobj 28 0 obj << /Type /XObject /Subtype /Image /Name /im1 /Length 27 0 R /Width 1614 /Height 2598 /BitsPerComponent 1 /ColorSpace /DeviceGray /Filter /CCITTFaxDecode /DecodeParms << /K -1 /EndOfLine false /EncodedByteAlign false /Columns 1614 /EndOfBlock true >> >> stream